

ENERGY ACTION PLAN

Psimolofou Community Cyprus

9 May 2012

Brief Summary

The "Pact of Islands" (ISLE-PACT project) is committed to developing Local Energy Action Plans, with the aim of achieving European sustainability objectives as set by the EU for 2020, that is of reducing CO₂ emissions by at least 20% through measures that promote renewable energy, energy saving and sustainable transport.

The Cyprus Energy Agency is a participating partner in the ISLE-PACT project and has invited Cyprus local authorities to demonstrate their political commitment by signing the "The Pact of Islands"; agreement in order to achieve the EU sustainability targets for 2020.

From Cyprus are involving 12 municipalities and 2 Communities one of them Psimolofou Community

The Community of Psimolofou is one of the villages of the mountainous district of Nicosia district and is part of a complex of Tamassos. Located about 16km. Southeast of Nicosia and is built on the right bank of the river Pedieos. Located at an altitude of 330 meters.

The year 2009 was designated as the reference year / recording of energy consumption and CO2 emissions in the City. According to actual consumption data collected by the Electricity Authority of Cyprus, the oil companies, etc. Statistical Service of Cyprus total energy consumption in Psimolofou 2009 was 31.509 MWh. The largest consumer of energy in the municipality is the transport 17.830 MWh, then the residential sector with 5.446 MWh.

The CO2 emissions in 2009 attributable to the overall energy consumption in the municipality are 11.664 tons.

For the forecast of CO2 emissions in the period 2010 to 2020, the scenario of expected evolution was established where it was estimated that without taking any measures emissions will amount to 11.957 tons.

The Sustainable Energy Action Plan prepared for the Municipality includes additional measures / actions to achieve at least the European goal of combating climate change. That is, the measures that will be taken by the Municipality in addition to national measures in order to overcome the goal of reducing CO2 emissions by at least 20% by 2020 with respect to the reference year 2009.

The proposed measures are split into the following categories:

Description	Αριθμός
Energy Savings in Municipality public buildings	3
Energy savings via informational campaigns	8
Energy savings in transport	1
Energy savings in street lighting	1
Municipality investments in renewable energy	1

ENERGY ACTION PLANΣ Psimilofou Community Cyprus

The estimated annual emission reduction for 2020 with the implementation of the above measures amounts to 5,201 tons. Also, it was estimated that the impact of the Community's application of the national measures taken to reduce emissions of carbon dioxide will be an additional reduction of approximately 2,598 tons.

The annual estimated emission reduction for 2020 with the implementation of the above measures is approximately 882 tons. Also, it was estimated that the impact on Psimolofou Community from the application of the national measures taken to reduce emissions of carbon dioxide will be an additional reduction of approximately 1.855 tons.

That is, 20% less than the reference year is 2009.

The budget of the Action Plan for the period 2012 to 2020 amounts to € 179.550 Funding for the implementation of the Energy Action Plan is expected to stem from the following resources:

- Budget of the Community
- From the savings that will result in energy reduction measures in buildings, vehicles and street lighting in the municipality.
- From revenues derived from investment of the municipality in Renewable Energy.
- Possible funding from the Fund will be created from the proceeds of Tender greenhouse gas emissions
- Possible funding from other European programs.

Index

1.	THE	ISLE-PACT PROJECT	
	1.1.		
	1.2.	COMMITMENTS FROM SIGNING THE COVENANT OF ISLANDS	6
	1.3.	Participating Municipalities and Communities in Cyprus	7
2.	СҮРІ	RUS	11
3.	PSIN	AOLOFOU COMMUNITY	12
	3.1.	INDRODUCTION	12
	3.2.	History	12
	3.3.	PHOTOS FROM THE COMMUNITY	13
4.	THE	CURRENT SITUATION IN PSIMOLOFOU COMMUNITY	15
	4.1.	DESCRIPTION OF BUILDINGS PSIMOLOFOU COMMUNITY	15
	4.2.	Streetlights Community Psimolofou	15
	4.3.	PUBLIC TRANSPORT	15
	4.4.	COMPLETED AND PLANNED INFRASTRUCTURE	16
	4.5.	MATERIALS RECYCLING PROGRAM IN THE COMMUNITY PSIMOLOFOU	17
	4.6.	POPULATION COMMUNITY PSIMOLOFOU.	17
5.	INVE	ENTORY OF ENERGY CONSUMPTION IN PSIMOLOFOU	18
	5.1.	RESIDENTIAL SECTOR	18
	5.2.	Primary Sector	18
	5.3.	Secondary Sector	18
	5.4.	Tertiary Sector	19
	5.5.	Transport	19
	5.6.	TOTAL FINAL ENERGY CONSUMPTION IN THE PSIMOLOFOU COMMUNITY	20
6.	CAR	BON DIOXIDE (CO ₂) EMISSIONS INVENTORY IN PSIMOLOFOU COMMUNITY	
	6.1.	Introduction	21
	6.2.	Residential Sector	21
		Primary Sector	
		Secondary Sector	
		Tertiary Sector	
		Transport	
		TOTAL FINAL ENERGY CONSUMPTION AT PSIMOLOFOU COMMUNITY	
	6.8.	Forecasting/Projection Scenario of CO ₂ Emissions	24
7.	PSIN	MOLOFOU COMMUNITY SUSTAINABLE ENERGY ACTION PLAN FROM 2011 TO 2020	
	7.1.	INDROTUCTION	
	7.2.		
	7.3.	ENERGY SAVING THROUGH AWARENESS RAISING CAMPAIGNS	
	7.4.	ENERGY SAVINGS IN TRANSPORT	
	7.5.		
	7.6.	DEVELOPMENT OF GREEN SPACES IN PSIMOLOFOU COMMUNITY	
	7.7.		
		gy Saving through awareness raising campaigns	-
		GY SAVINGS IN STREET LIGHTING	
		LOPMENT OF GREEN SPACES	
		CONTRIBUTION OF NATIONAL MEASURES ON SUSTAINABLE ENERGY ACTION PLAN OF PSIMOLOFOU COMMUNITY	
	7.9.		
	7.10.	FINANCING THE SUSTAINABLE ENERGY ACTION PLAN	49

Tables

Table 1 Bulbs in Psimolofou Community	. 15
Table 2 Energy demand in the residential sector MWh for 2009	. 18
Table 3 Energy Demand in MWH in the primary sector for the year 2009	. 18
Ταβίε 4 Ζήτηση ενέργειας σε ΜWή στο δευτερογενή τομέα για το έτος 2009	. 18
TABLE 5 FINAL ENERGY CONSUMPTION IN MWH IN THE TERTIARY SECTOR FOR THE YEAR 2009	. 19
Tablea 6 Final energy consumption in MWh in transports for the year 2009	. 19
TABLE 7 FINAL ENERGY CONSUMPTION IN MWH FOR THE YEAR 2009	. 20
TABLE 8 COEFFICIENTS FOR CALCULATING CO2 EMISSIONS	. 21
Table 9 CO ₂ emissions in tonnes in the residential sector of Psimolofou Community in 2009	. 21
TABLE 10 CO2 EMISSIONS IN TONNES IN THE PRIMARY SECTOR OF PSIMOLOFOU COMMUNITY 2009	
Table11 CO₂ EMISSIONS IN TONNES IN THE SECONDARY SECTOR AT PSIMOLOFOU COMMUNITY 2009	. 22
Table 12 CO ₂ emissions in tonnes in the tertiary sector at Psimolofou Community 2009	. 22
Table 13 Final energy consumption in MWh in transports for the year 2009	. 22
Table 14 Final energy consumption in MWh for the year 2009	. 23
TABLE 15 GROWTH RATES OF ENERGY CONSUMPTION PER CONSUMER USED IN THE EXPECTED EVOLUTION SCENAR	1024
Table 16 Increased efficiency in energy end use (reducing the final energy for the same useful	
ENERGY)	. 25
Table 17 Coefficient of energy performance for electricity generation	. 26
Table 18 Expected evolution scenario for forecasting CO_2 emissions for the period 2009 to 2020	. 26
Table 19 Brief Presentation of Measures Taken by Psimolofou Community and Included in the	
SUSTAINABLE ENERGY ACTION PLAN	. 43
TABLE 20 TOTAL PRESENTATION OF ENERGY SAVING FROM NATIONAL MEASURES	. 45
Table 21 Total presentation of reducing CO2 emissions from national measures	. 46
TABLE 22 EQUATIONS USED FOR ACCESS CONTRIBUTION OF THE NATIONAL MEASURES TO SAVE ENERGY	. 47

Pictures

PICTURE1 SIGNING CEREMONY OF THE PACT OF ISLAND ON THE 20 TH JANUARY 2011 IN NICOSIA	
PICTURE 2 REPRESENTATIVES OF THE EU ISLANDS, MAYORS OF ISLAND COMMUNITIES AND REPRESENTATIVES OF T	HE.
ISLAND AUTHORITIES ALONG WITH MERCEDES BRESSO, PRESIDENT OF THE COMMITTEE OF THE	
REGIONS AND HELEN MARIANO, GENERAL SECRETARY OF CPMR (CONFERENCE OF PERIPHERAL	_
AND MARITIME REGIONS)	8
PICTURE 3 THE MAYOR OF AGIOS ATHANASIOS KYRIAKOS XATZITTOFIS (LEFT) AND THE MAYOR OF AGLANTZIA	_
ANDREAS PETROU (RIGHT)	8
PICTURE 4 THE MAYOR OF ARADIPPOU CHRISTAKIS LIPERIS (LEFT) AND THE MAYOR OF IDALION LEONTIOS	_
KALLENOS (RIGHT)	g
PICTURE 5 THE MAYOR OF LAKATAMIA LOUKAS IATROU (LEFT) AND THE MAYOR OF LARNACA ANDREAS MOYSEOS (RIGHT)	g
PICTURE 6 THE SECRETARY OF LATSIA MUNICIPALITY MICHALIS SOKRATOUS (LEFT) AND THE MAYOR OF PARALIMA	NI
Andreas Evaggelou (right)	9
PICTURE 7 THE MAYOR OF POLIS CHRYSOCHOUS AGGELOS GEORGIOU (LEFT) AND THE MAYOR OF STROVOLOS	
SAVVAS ILIOFOTOU (RIGHT)	g
PICTURE 8 THE SECRETARY OF ERGATES COMMUNITY KYRIAKOS CHRISTODOULOU (LEFT) AND THE PRESIDENT OF	F
GERI COMMUNITY (MUNICIPALITY) ARGYRIS ARGYROU (RIGHT)	
PICTURE 9 THE PRESIDENT OF PSIMOLOFOU COMMUNITY IOANNIS LAZARIDES	. 10
PICTURE 10 VIEW OF THE COMMUNITY PSIMOLOFOU	. 12
PICTURE 11 COMMUNITY COUNCIL OF PSIMOLOFOU	. 13
PICTURE 12 ELEMENTARY SCHOOL PSIMOLOFOU	. 13
PICTURE 13 COMMUNITY CEMETERY	. 13
PICTURE 14 COMMUNITY CLINIC	. 13
PICTURE 15 COMMUNITY KINDERGARTEN	
PICTURE 16 PARK «FALLEN AND MISSING "	. 14
PICTURE 17 BUS SERVICES TO THE COMMUNITY PSIMOLOFOU	. 16
PICTURE 18 SHARE OF FINAL ENERGY CONSUMPTION BY SECTOR FOR THE YEAR 2009	. 20
PICTURE 19 SHARE OF FINAL ENERGY CONSUMPTION BY ENERGY SOURCE FOR THE YEAR 2009	. 20
PICTURE 20 SHARE OF FINAL ENERGY CONSUMPTION BY SECTOR FOR THE YEAR 2009	. 23
PICTURE 21 SHARE OF FINAL ENERGY CONSUMPTION BY ENERGY SOURCE FOR THE YEAR 2009	. 24
Picture 22 Expected evolution scenario for forecasting CO_2 emissions for the period 2009 to 2020	26
PICTURE 23 SCHEMATIC OF THE EXPECTED EVOLUTION SCENARIO OF CO2 EMISSIONS IN PSIMOLOFOU AND THE	
REDUCTION TARGET FOR 2020 BY 21%	. 48

1. THE ISLE-PACT PROJECT

1.1. Intoduction

The main objective of the ISLE-PACT project is the development of Local Sustainable Energy Action Plans, aiming at achieving European sustainability objectives as set by the EU for 2020, namely a reduction of CO2 emissions by at least 20% through measures promoting renewable energy, energy savings and sustainable transport. The duration of the project is set at 30 months, from 1st February 2010 until 31st July 2012.

The project coordinator is the organization Comhairle nan Eileen Siar (CnES) – The Outer Hebrides of Scotland. The project is funded by the European Commission, Directorate General for Energy.

Project participants are invited to demonstrate their political commitment by signing the "The Pact of Islands", a three-page document detailing all aspects and targets that will be set by the authorities of the islands in order to achieve the EU sustainability goals for 2020.

1.2. Commitments from signing the Covenant of Islands

The Covenant of Islands is a binding instrument on which the competent island authorities will adopt political commitments in order to achieve the Project objectives. The Covenant is a three-page text and is formatted in a similar way as the Covenant of Mayors, where the specificities of European island communities are taken into account. It signifies the start of a number of important objectives such as:

- Further implementation of EU targets for 2020, reducing CO₂ emissions by at least 20% in areas of implementation,
- The preparation of the Sustainable Energy Action Plan, which includes the original recording of emissions data (Baseline Emission Inventory), and outlines the methods for achieving the objectives,
- The preparation and submission of implementation reports at least every 2 years after delivery of the final Sustainable Energy Action Plan for evaluation, monitoring and verification of individual goals,
- To organize Energy Days, in collaboration with the European Commission and other stakeholders (e.g. Cyprus Energy Agency), providing an opportunity for citizens to have direct contact with the subject and also to benefit directly from sustainable energy use, as well as informing the local media for individual developments in local action plans,
- Participation in various conferences and workshops organized by various European institutions in connection with the Covenant of Mayors and the Pact of Islands,
- Further implementation of energy investment in the project areas.

1.3. Participating Municipalities and Communities in Cyprus

In Cyprus, twelve (12) Municipalities and two (2) Communities have signed the Pact of Islands and therefore participate in the ISLE-PACT project:

MUNICIPALITIES-COMMUNITIES							
Strovolos Municipality	Idalion Municipality						
Agios Athanasios MunicipalitY	Latsia Municipality						
Lakatamia Municipality	Paralimni Municipality						
Aglantzia Municipality	Geri Municipality						
Larnaca Municipality	Ergates Community						
Aradippou Municipality	Psimolofou Community						
Polis Chrysochous Municipality	Lefkara Municipality						

Picture1 Signing ceremony of the Pact of Island on the 20th January 2011 in Nicosia

The signing ceremony of the Pact of Islands was performed in the building of the Committee of the Regions in Brussels on 12th April 2011. The event was part of the

European Sustainable Energy Week, 11-15 April 2011, which brings together over 5000 participants each year in Brussels and many others elsewhere in Europe with multiple conferences, exhibitions and specialized conferences.

Picture 2 Representatives of the EU islands, mayors of island communities and representatives of the island authorities along with Mercedes Bresso, President of the Committee of the Regions and Helen Mariano, General Secretary of CPMR (Conference of Peripheral and Maritime Regions)

Picture 3 The Mayor of Agios Athanasios Kyriakos Xatzittofis (left) and the Mayor of Aglantzia Andreas Petrou (right)

Picture 4 The Mayor of Aradippou Christakis Liperis (left) and the Mayor of Idalion Leontios Kallenos (right)

Picture 5 The Mayor of Lakatamia Loukas latrou (left) and the Mayor of Larnaca Andreas Moyseos (right)

Picture 6 The Secretary of Latsia Municipality Michalis Sokratous (left) and the Mayor of Paralimni Andreas Evaggelou (right)

Picture 7 The Mayor of Polis Chrysochous Aggelos Georgiou (left) and the Mayor of Strovolos Savvas Iliofotou (right)

Picture 8 The Secretary of Ergates Community Kyriakos Christodoulou (left) and the President of Geri Community (Municipality) Argyris Argyrou (right)

Picture 9 The President of Psimolofou Community Ioannis Lazarides

2. CYPRUS

Cyprus is the largest island in the eastern Mediterranean. The two main mountain ranges are Pentadactylos in the north and Troodos in the central and south-western part of the island. Between them lies the fertile plain of Mesaoria.

Cyprus has long been a crossroads between Europe, Asia and Africa and bears traces of many successive civilizations: Roman theatres and houses, Byzantine churches and monasteries, castles from the era of the crusades era and prehistoric settlements.

The main economic activities of the island are tourism, clothing exports and craft items and merchant shipping. Traditional crafts include embroidery, pottery and bronze.

Traditional specialties include mezedes - appetizers served as a main course - halloumi cheese and the drink of zivania.

After the Turkish invasion in 1974 and the occupation of the northern part of the island, the Greek and Turkish communities of Cyprus have been divided by so-called Green Line.

Cyprus is known as the island of Aphrodite, the goddess of love and beauty, as according to legend Cyprus is the birthplace of the goddess.

In modern literature the names of Costas Montis (poet and writer) and Demetris Gotsis (writer) stand out, while Evagoras Karageorghis and Marios Tokas are distinguished composers.

Year of EU entry: Political system:

Capital: Total area:

Population:

Currency

2004
Democracy
Nicosia (Lefkosia)
9.250 km²
0,8 million
euro

Source: http://europa.eu

3. PSIMOLOFOU COMMUNITY

3.1. Indroduction

The Community of Psimolofou is one of the villages of the mountainous district of Nicosia district and is part of a complex of Tamassos. Located about 16km. Southeast of Nicosia and is built on the right bank of the river Pedieos. Located at an altitude of 330 meters.

The name of the village, according to Jack C. Goodwin, came from a hill in the area, Late Hill, meaning one good hill for cultivation. Nearchus Clerides, explains the name of the Community of the Late again but why Hill cereals grown in this region are maturing later than cereals grown in other neighboring areas. The settlement therefore existed in the old tardive Hill over time resulted in designation Psimolofou. But according to another version, the village got its name from the shape of the hill mentioned above, who had shaped bread. The combination of two words-Hill bread, gave the name Psomolofou. However earlier on English, the village actually called Psomolophou. For others the name came from "high ground." The hill that dominates the area and is located northwest of the village and at times have been discovered in this koursemenoi graves. Now part of the hill has been flattened and there erected the present Community golf village.

Picture 10 View of the Community Psimolofou

[Source: http://www.psimolofou.org]

3.2. History

The settlement of Psimolofou dating from the medieval era or earlier, as there are ruins in various senior chapels. Typically referred to that in the Frankish Psimolofou was under the hegemony of Templioton Franks who were monks and had as their center the village temple in Kyrenia.

Information from the book by Jack C. Goodwin, saying that the Psimolofou had to pay taxes to the Patriarchate of Jerusalem, which had moved to Cyprus after the collapse of the Christian power there in 1291. Later, around 1326 there through written texts which seem to instructions given by

E. Rey Recherches to the Bishop of Paphos Ms. Cardinal of St. Paul of Antioch as inform him whether "tithe" which gives Psimolophou more than 120 gold florins a year.

Upon the Venetian, the village Psimolofou with neighboring Monday was part of the estate of Lord Peter Lase which he bequeathed to his great son. This year thousands of trees planted in the area of which there are quite up to date.

During the Turkish enough fertile land fell into the hands of the Turks aghas, whose descendants lived until 1960 when he left with the known facts of the time. Features have survived until today Turkish names large plains definitely belonged to Turkish agas, like "Plain of Mouroutis" and "Kouseoi." In "Kouseous" is so far damaged before coming mansion where the Turks seemed to be the seat of feudal Franks. For many Turkish residents to flee their belongings from the depredations of the Turks donate the Monastery of Macheras. So the only Machairas acquired enormous wealth. The estates were worked by the monks of the monastery, who stayed overnight in the village in large monastery with many rooms - lofts - for monks, warehouses and other premises. The shareholders and much of this property has been sold, even though several estates so far is in the possession of the monastery.

During the Liberation War of 1955-1959 and the Turkish rebellion of 1963 and the War of 1974, several residents of the community were present them. In the battles of Tylliria in 1964 killed Gregory Nicholas Cow. While the Turkish invasion of 1974, four residents of our community are still missing.

3.3. Photos from the Community

Below are some photos from the Community of Psimolofou.

Picture 11 Community Council of Psimolofou

Picture 13 Community Cemetery

Picture 12 Elementary School Psimolofou

Picture 14 Community Clinic

Picture 15 Community Kindergarten

Picture 16 Park «Fallen and Missing "

(Source: http://www.psimolofou.org)

4. THE CURRENT SITUATION IN PSIMOLOFOU COMMUNITY

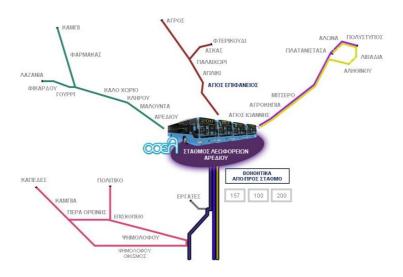
4.1. Description of buildings Psimolofou Community

- The hours of operation for all Community services are 7:30 to 14:00 for the summer season (June 1 August 31) and for the remaining months the hours are 7:30 to 14:30 and every Wednesday until 18:00.
- There is no central heating system that requires the consumption of oil, gas etc but the heating system is the same as for cooling buildings.
 - In all buildings of the Community there are solar panels for water heating and no building is not installed photovoltaic system.

4.2. Streetlights Community Psimolofou

The total energy consumption in 2009 for streetlights equaled 124MWh while the total energy consumption in 2010 for streetlights equaled 127MWh

The type and power of the lamps shown in the table below:


Table 1 Bulbs in Psimolofou Community					
LAMP TYPE	POWER				
HPS*	150 W				
HPS	70 W				
Compact Fluoroscent	21 W				

 ^{*} High pressure Sodium

4.3. Public transport

Public transport in the boundaries of the Community made by Transportation Organization of Nicosia District (O.S.E.L). Future goals are to strengthen O.S.E.L of public passenger transport and to increase the use of the bus by 2% today to more than 10%, which is the goal of the ministry until 2019. Aims by 2013 to install integrated fleet management system and machines issuing and cancellation of tickets to the traveling public can be better and easier movement of buses. Even to enhance a driver through frequent training of staff at all levels. We tried through various programs through the Department of Education and the Ministry of Communications to promote and consolidate the use of the bus for children, changing the culture of using public means of transport.

Picture 17 Bus services to the Community Psimolofou

Details of the services operated by the Community of Psimolofou available on the "OSEL" website www.osel.com.cy.

4.4. Completed and planned infrastructure

The Community of Psimolofou is a village with rapid growth, particularly in the last decade. Its geographical position which states near the capital Nicosia, but that still preserves all the advantages of a village, not only do residents not to leave here but also many foreigners to come and build in the Community. Population growth, however, brought the number of other needs, the respective Community Council tried honestly to solve planning and executing various infrastructure projects. The main ones are as follows:

- 1. The Community Tennis stadium electrified and placed large headlights that allow the use of the stadium at night to practice her children Mrs. community football teams of both Associations Community A.O.PS. Psimolofou and concord.
- 2. Was paved all the roads in the village and most of rural roads. Where was impossible blacktop improved significantly by using special materials earthen roadway.
- 3. Built a new house of the Community Council areas within which it operates and Clinic. Serves as possible community residents, mostly elderly and young children. Open every Thursday morning and what services are provided by a government doctor, nurses, pharmacist and health visitor.
- 4. Became pedestrian street in front of the Elementary School and Community Nursery and built special bends and crossing in front of the entrance of the school for the necessary child safety.
- 5. The beautification of the square in the center of the village is a work that adorns the Community. Beyond the sensual beauty, the area hosts the most events of social and cultural life of residents.

- 6. Works were completed and put into operation, alongside existing, new water tank potable water capacity of 500 metric tons, thus increasing the possibility of water supplies to 620 metric tons, which fully meets the needs of the Community.
- 7. Completed construction of the new Community with landscaped cemetery burial sites and premises necessary infrastructure required for easy handling of the process of burial.

4.5. Materials recycling program in the Community Psimolofou

The program is collecting recyclables to the limits of Community Psimolofou performed by a contractor of the nonprofit organization Green Dot Cyprus. Within the boundaries of Community recycling bins placed, PMD (blue), paper (brown) and glass and meditation is done every week. About Green Dot (Cyprus) Public Co Ltd (GDC), founded by the CCCI and number of obligated packaging managers on July 17, 2003, as a non-profit organization, in accordance with the provisions of Law 32 (I) / 2002. The creation of GDC stems from N.32 (I) / 2002 which sets out the framework and responsibilities of business considered and packaging managers should ensure the recovery and recycling of packaging.

Meanwhile, the agency is part of the largest global network of collecting societies packaging of Packaging Recovery Organization Europe based in Brussels (PRO EUROPE) and includes 31 other similar systems around the world (more information on the organization's website http://www.pro-e.org/ above By participating, the system became the sole manager of the Green Dot mark in Cyprus. In the Community Psimolofou 5 points are fitted with recycling bins and are the following:

STREET Vasilis Michaelides (PMD, paper, glass) **
(Across from the Community Council Offices)
 STREET Tamasi (PMD, maps)
(At the junction with the road Vyzakia)
 STREET KYRIAKOU MATSI (PMD, maps)
(Next to the entrance of the Community Stadium)
 STREET GRIVA DIGENI (PMD, maps)
(Next to the old cemetery of the Community)
 STREET GEROVOUNOU (PMD, maps)
(At the entrance to the road)

4.6. Population Community Psimolofou

In the 2001 Census carried out by the Statistical Service of Cyprus, the inhabitants of the village was 1,358 and now exceeds the 1,686 residents

5. INVENTORY OF ENERGY CONSUMPTION IN PSIMOLOFOU

5.1. Residential sector

Table 2 Energy demand in the residential sector MWh for 2009

	rable 2 Energy demand in the residential sector with for 2005								
Description	Electricity	Fuel Oil	LPG	Solar	Geothermal	Biomass	Total		
Hot water	95	83	6	386	3	21	594		
Heating and cooling	2.280	1.360	160	12	8	200	4.020		
Lighting	127	-	-	-	-	-	127		
Kitchen	95	-	41	-	-	0	136		
Electrical devices or appliances	570	-	-	-	-	-	570		
Total	3.166	1.443	207	398	11	221	5.446		

5.2. Primary Sector

Table 3 Energy Demand in MWh in the primary sector for the year 2009

	1 1					
Description	Electricity	Fuel Oil	Diesel	LPG	Biomass	Total
Agriculture, Forestry, Fishing	1.863	1.040	729	240	745	4.617
Mining and Quarrying	-	-	-	-	-	-
Total	1.863	1.040	729	240	745	4.617

5.3. Secondary Sector

Table 4 Ζήτηση ενέργειας σε MWh στο δευτερογενή τομέα για το έτος 2009

Table 4 ziftifoli eveppetas de iniviti ded dedepopenti topea pia to etos 2005									
Description	Electricity	Fuel oil	LPG	Solar	Biomass	Total			
Processing	179	100	70	600	3	952			
Water supply, sewerage, waste management	22	12	9			43			
Construction	4	2	2			8			
Total	205	114	80	600	3	1.002			

5.4. Tertiary Sector

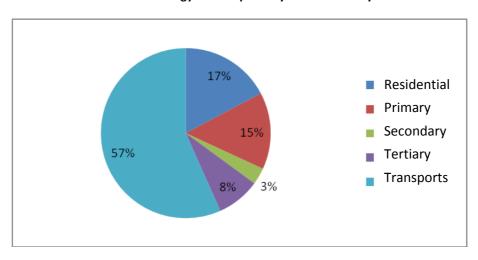
Table 5 Final energy consumption in MWh in the tertiary sector for the year 2009

Description	Electricity	Fuel oil	LPG	Solar	Biomass	Total
Wholesale and Retail trade, repair of motor vehicles and motorcycles	281	157	110	10	4	563
Hotels and restaurants	56	31	22	1	1	111
Public administration and social security	25	14	10	5	-	54
Defence, Justice, Police and Fire station/department	-	-	-	-	-	-
Education	14	8	5	3	-	30
Human Health and Social Care	7	4	3		-	14
Other Services	867	484	339	13	12	1.716
Public Lighting	124	-	-	-	-	124
Total	1.375	698	489	33	11	2.613

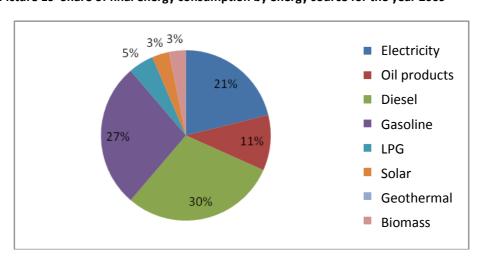
5.5. Transport

Table α 6 Final energy consumption in MWh in transports for the year 2009

Description	Electricity	Diesel	Gasoline	Biomass	Total
Urban and suburban passenger transports	0	193	179	0	357
Other passenger transportation services (taxi, tourism, school buses, etc)	0	3.093	2.868	0	5.706
Commercial ground transportation services and removable services	0	0	0	0	0
Private Vehicles	0	6.380	5.916	0	11.768
Total	0	9.666	8.963	0	17.830



5.6. Total final energy consumption in the Psimolofou Community


Table 7 Final energy consumption in MWh for the year 2009

Sector	Electricity	Fuel oil	Diesel	Gasoline	LPG	Solar	Geothermal	Biomass	Total
Residential	3.166	1.443	-	-	207	398	11	221	5.446
Primary	1.863	1.040	-	-	729	-	-	745	4.617
Secondary	205	114	-	-	80	600	-	3	1.002
Tertiary	1.375	698	-	-	489	33	-	18	2.613
Transports	-	-	9.252	8.578	-	-	-	-	17.890
Total	6.610	3.296	9.252	8.578	1.505	1.030	11	986	31.509

Picture 18 Share of final energy consumption by sector for the year 2009

Picture 19 Share of final energy consumption by energy source for the year 2009

6. CARBON DIOXIDE (CO₂) EMISSIONS INVENTORY IN PSIMOLOFOU COMMUNITY

6.1. Introduction

 Γ Carbon dioxide emissions were calculated using standard emission factors on consumption based on the energy source and use. Based on these factors Renewable Energy Sources (RES) are considered to have zero carbon emissions.

Table 8 Coefficients for calculating CO₂ emissions

	Energy Source	IPCC emission factors
	Fuel oil	0,279
	Diesel	0,267
FOSSIL FUELS	Gasoline	0,249
1033IL10LL3	Natural Gas	0,202
	LPG	0.240
	Electricity	0,874
	Wind	0
	Hydro	0
RENEWABLE ENERGY SOURCES	Solar	0
	Geothermal	0
	Biomass	0

6.2. Residential Sector

Table 9 CO₂ emissions in tonnes in the residential sector of Psimolofou Community in 2009

Description	Electricity	Fuel Oil	LPG	Solar	Geothermal	Biomass	Total
Hot water	83	23	1	-	-	-	108
Heating and Cooling	1.993	379	38	-	-	-	2.410
Lighting	111	-	-	-	-	-	111
Kitchen	83	-	10	-	-	-	93
Electrical devices or appliances	498	-	-	-	-	-	498
Total	2.767	403	50	-	-	-	3.220

6.3. Primary Sector

Table 10 CO₂ emissions in tonnes in the primary sector of Psimolofou Community 2009

Description	Electricity	Fuel Oil	Diesel	LPG	Biomass	Total
Agriculture, Forestry, Fishing	1.628	290	-	175	-	2.093

Mining and Quarrying	-	-	-	-	-	-
Total	1.628	290	0	175	-	2.093

6.4. Secondary Sector

Table11 CO₂ emissions in tonnes in the secondary sector at Psimolofou Community 2009

					,	
Description	Electricity	Fuel Oil	LPG	Solar	Biomass	Total
Processing	156	28	17	-	-	201
Water supply, sewerage, waste management	19	3	2	-	-	25
Construction	3	1	-	-	-	4
Total	179	32	19	-	-	230

6.5. Tertiary Sector

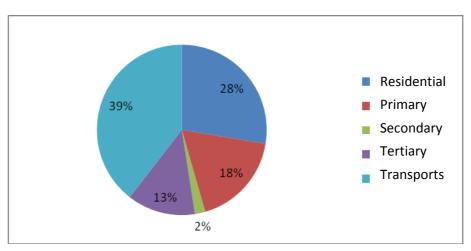
Table 12 CO₂ emissions in tonnes in the tertiary sector at Psimolofou Community 2009

Description	Electricity	Fuel Oil	LPG	Solar	Biomass	Total
Wholesale and Retail trade, repair of motor vehicles and motorcycles	246	44	5	-	-	316
Hotels and restaurants	49	9	0	-	-	63
Public administration and social security	22	4	3	-	-	28
Defence, Juctice, Police and Fire station/department	-	-	-	-	-	-
Education	12	2	2	-	-	16
Human Health and Social Care	6	-	2	-	-	8
Other Services	758	12	135	-	-	975
Public Lighting	109	-	-	-	-	109
Total	1.202	195	117	-	-	1.514

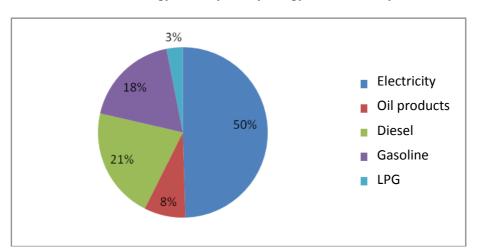
6.6. Transport

Table 13 Final energy consumption in MWh in transports for the year 2009

Table 15 Fillal ellergy CC	Table 13 Final energy consumption in MWH in transports for the year 2009						
Description	Electricity	Fuel Oil	LPG	Solar	Biomass		
Urban and suburban passenger transports	-	49	43	-	92		
Other passenger transportation services (taxi, tourism, school buses,	-	790	684	-	1.474		


etc)					
Commercial ground transportation services and removable services	-	-	-	-	-
Private Vehicles	-	1.630	1.410	-	3.040
Total	-	2.470	2.136	-	4.606

6.7. Total final energy consumption at Psimolofou Community


Table 14 Final energy consumption in MWh for the year 2009

Sector	Electricity	Fuel oil	Diesel	Gasoline	ГРG	Solar	Geothermal	Biomass	Total
Residential	2.767	403	-	-	50	-	-	-	3.220
Primary	1.628	290	-	-	175	-	-	-	2.093
Secondary	179	32	-	-	19	-	-	-	230
Tertiary	1.202	195	-	-	117	-	-	-	1.514
Transports	-	-	2.470	2.136	-	-	-	-	4.606
Total	5.777	920	2.470	2.136	361	-	-	-	11.664

Picture 20 Share of final energy consumption by sector for the year 2009

Picture 21 Share of final energy consumption by energy source for the year 2009

6.8. Forecasting/Projection Scenario of CO₂ Emissions

For the forecasting/projection of CO₂ emissions in the period 2010 to 2020, a scenario of expected evolution was established, which includes the following main factors:

- 1. Use of annual growth rates of energy consumption per sector based on the statistics available during the preparation of the Energy Action Plan.
- 2. Use of annual growth rates of energy efficiency at the end-use due to the improvement of existing technologies.
- 3. Estimation of the coefficient of performance of Cyprus Power Plants in subsequent, years, taking into account the technology improvement and the modernization of the existing equipment.
- 4. The gradual introduction, use and integration of natural gas into the power generating system.

Table 15 Growth rates of energy consumption per consumer used in the expected evolution scenario

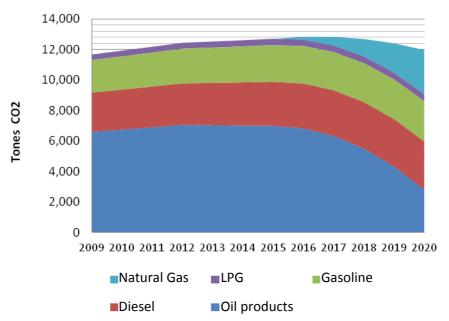
Sector description	Estimated annual energy consumption growth rate
Residential	
Hot water	3%
Heating and cooling	3%
Lighting	3%
Cooking	3%
Refrigerators and freezers	3%
Washers and dryers	3%
Dishwashers	3%
Televisions	3%
Other electrical devises/appliances	3%
Primary Sector	

Agriculture, Forestry, Fishing	2,0%
Mining and Quarrying	0,0%
Secondary Sector	
Manufacturing & Processing	3,0%
Water supply, sewerage, waste management and remediation activities	1,5%
Construction	1,0%
Tertiary Sector	
Wholesale and retail trade, repair of motor vehicles and motorcycles	2,0%
Accommodation services activities and food services	2,0%
General administration and social security	2,0%
Defence services and justice, police and fire brigades	2,0%
Education	2,0%
Activities related to Human Health and Social Care	2,0%
Other Services	2,0%
Municipal / Public lighting	2,0%
Transport (vehicles)	
Private transports	1%
Urban and suburban passenger transports	2,0%
Other road passenger transport services (taxi, tourism, school buses, etc.)	0%
Freight road transports and removal services	2,5%
Secondary energy production	
Solar energy for electricity generation	3,0%
Wind energy for electricity generation	0,0%
Solar energy for heating and cooling	0,0%
Geothermal energy for heating and cooling	1,0%

Table 16 Increased efficiency in energy end use (reducing the final energy for the same useful energy)

Sector description	Estimated annual growth of efficiency in end use of energy
Residential	
Hot water	0,5%
Heating and Cooling	0,5%
Lighting	0,5%
Cooking	0,5%
Refrigerators and freezers	0,5%
Washers and dryers	0,5%
Dishwashers	0,5%
Televisions	0,5%
Other electrical devises/appliances	0,5%
Other services	0,5%

Municipal / public lighting	0,5%
Transport (vehicles)	
Private transports	0,5%


Table 17 Coefficient of energy performance for electricity generation

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Fuel Oil	32%	32%	32%	33%	34%	35%	35%	35%	35%	35%	35%
Diesel	25%	25%	25%	25%	25%	26%	27%	28%	29%	30%	31%
Natural gas	32%	32%	32%	33%	34%	43%	43%	43%	44%	44%	44%

Table 18 Expected evolution scenario for forecasting CO₂ emissions for the period 2009 to 2020

Year	Fuel Oil	Diesel	Gasoline	LPG	Natural Gas	Total	Increase compared to 2009
2009	6.597	2.569	2.136	361	0	11.664	0%
2010	6.746	2.621	2.178	369	0	11.914	2%
2011	6.898	2.673	2.221	377	0	12.168	4%
2012	7.054	2.726	2.265	385	0	12.429	7%
2013	7.025	2.780	2.310	393	0	12.507	7%
2014	7.002	2.835	2.355	401	0	12.594	8%
2015	6.990	2.887	2.402	410	0	12.688	9%
2016	6.823	2.940	2.449	418	190	12.821	10%
2017	6.329	2.994	2.497	427	573	12.820	10%
2018	5.498	3.050	2.547	436	1.149	12.680	9%
2019	4.325	3.107	2.597	446	1.920	12.394	6%
2020	2.800	3.165	2.648	455	2.889	11.957	3%

Picture 22 Expected evolution scenario for forecasting CO₂ emissions for the period 2009 to 2020

7. PSIMOLOFOU COMMUNITY SUSTAINABLE ENERGY ACTION PLAN FROM 2011 TO 2020

7.1. Indrotuction

The Sustainable Energy Action Plan that has been prepared for the Communityi includes additional measures/actions so as to achieve at least the European goal of combating climate change. This includes measures taken by the Community, in addition to national measures, to overcome the goal of reducing CO_2 emissions by at least 20% by 2020 compared to the reference year 2009.

Annual base emissions in 2009 (tn CO ₂ /year)	Expected annual emissions in 2020 (tn CO ₂ /year)	Average emissions growth (tn CO ₂ /year)	Minimum emissions target in 2020 (tn CO ₂ /year)	Desired minimum (20%) emissions reduction (tn CO ₂ /year)
11.664	11.957	27	9.331	2.626

Despite estimating and aggregating the contribution of national measures in the Sustainable Energy Action Plan, the achievement of the national goals cannot be determined by the Community. However, several of the measures proposed to be implemented at a local level will support and complement national measures, in order to enable the achievement of the main objectives.

The measures are divided in the following key areas:

- Energy saving in public buildings
- Energy savings through awareness raising campaigns
- Energy saving in transport
- Energy saving in street lighting
- Investments in Renewable Energy Sources (RES)
- Development of green spaces

7.2. Energy efficiency in public buildings

Measure: EE 1 - Lamps Replacement

This measure is about the replacement of all inefficient light bulbs in the buildings of the Community. The indirect application cost of this measure is not particularly important as lamps purchase and replacement is required by technical and financial criteria.

Measure implementation period: 2012

Measure Code	EE1					
Measure Name	Lamps Replacer	nent				
APPLICATION COST						
Cost of investment				C	ost (€)	
Replacement Lamp (30)				150	
Cost of operation						
Replacement lamp			0€			
Indirect costs						
			☐ – High ☐ – Medium ☑ – Low			
APPLICATION BENEFITS						
Energy			Εξοικονό	όμηση Εν	νέργειας (kWh	/year)
				1	l.150	
Financial			Energy Saving (kWh/year)	_	e electricity E/kWh)	Saving (€/year)
			1.150		0.25	287,5
Environmental			Emissions Saving			
				(kg _C	₀₂ / year)	
				1	L.005	
RESULTS – EVALUATIO	N					
Estimated		0 15 4	E/ kg _{CO2 annual saving}		Proposed for	Implementation
Unit Cost (€/kg CO ₂)		3,13	CO2 annual saving			
MEASURE TO IMPLEM	ENT					
Total Cost	Income		Emission Reduction Repayme			Depreciation
150 €	287,5 €		1.005 Kg _{co2} / ye	0,5	2 years	

Measure: EE2 Maintenance of heating and air conditioning

The indirect cost of the measure is small and includes maintenance equipment and spare parts required for air conditioning and heating. Required to determine competence in the technical staff of the Community will be responsible for maintenance of the heating and cooling of buildings by Community 6 months.

Period of application of the measure: 2012-2020

Measure Code	EE2					
Measure Name	Maintenance of heating Air Conditioning Systems					
APPLICATION COST						
Cost of investment				C	ost (€)	
Heating Air Conditionir	ng Maintenance				0	
Cost of operation						
Heating and Air Condit	ioning Maintenan	ice	200 €/year			
Indirect costs						
			☐ – High ☐ – Medium ☑ – Low			
APPLICATION BENEFIT						
Energy			End	ergy Sav	ving (kWh/year))
					2.000	
Economics			Energy Saving (kWh/year)	Average electricity price (€/kWh)		Saving (€/year)
			2.000		0.25	500
Environmental			Emission Saving (kg _{co2} / year)			
					1458	
RESULTS – EVALUATIO	N					
Unit Cost (€/kgCO₂) Roof insulation		0,147	€/ kg _{CO2 annual} saving		Proposed for in	mplementation
ΜΕΤΡΟ ΠΡΟΣ ΥΛΟΠΟΙΗ	łΣH		-			
Total Cost 200 €	Saving 250€		Emission Reduc 1458Kg _{co2} / ye			depreciation years

Measure: EE 3 Renewable electricity in buildings with PV Community

This included the installation of electricity with photovoltaic panels. The total installed power is 20 kW and will cover an area of approximately 200 m2.

The indirect cost of the measure is not very significant because it requires (a) the preparation conditions for receipt of tenders (b) tender evaluation by technical and economic criteria, (c) completion form (request) to secure grants from the Grant Scheme 2009-2013 the MCIT. It must also be the process of linking the PV EAC network.

Photovoltaic systems are sold to a grant kWh (price € 0,25). Implementation Period 2013-2016

Measure Code	EE3					
Measure Name	Renewable e	electricity i	n buildings Commun	ity		
APPLICATION COST						
Cost of investment			Total (€)			
20 kW photovoltaic sys	tem		50.000			
Cost of operation						
20 kW photovoltaic sys	tem		0 € (negligible cost	for peri	odic cleaning of	frames)
Indirect costs						
			☐ – High ☑ – Medium ☐ – Low			
APPLICATION BENEFIT						
Energy			Power (kW)	ge	lectricity eneration h/kW.year)	Green Energy (kWh/year)
Photovoltaic System 20	kW		20		1500	30.000
Financial			Green Energy (kWh/year)	е	dized price of lectricity (€/kWh)	Income (€/year)
Photovoltaic System 20	kW		30.000		0.25	7.500
Environmental		Emission reduction factor (kg _{co2} /kW.year)	Power (kW)		Emission reduction (kg _{co2} / year)	
Energy			1.183		20	23.660
RESULTS – EVALUATION	I					
Unit Cost (€/kgCO₂) Photovoltaic System 20 kW 2,11€/ kg			CO2 annual saving		Proposed for in	nplementation
MEASURE FOR IMPLEM	ENTATION					
Total Cost 50.000 €	Inco 7.50	-	Emission Reduct 23.660 Kg _{co2} / y		• •	

7.3. Energy Saving through Awareness Raising Campaigns

Measure: ESAC1 - Seminar on Renewable Energy

The organization of an annual seminar on Renewable Energy Sources (RES) in Psimolofou was examined. The all-day seminar will be held at the Town Hall, annually for a total of 3 years.

The indirect cost for the application of this measure can be considered high as apart from the organization of the seminar (speakers, invitations, space, catering etc), interested parties will have to bear the costs of implementing RES at home on their own.

Measure implementation period: 2013 - 2015

Measure Code	ESAC1					
Measure Name	Organizing an annual seminar for RES					
APPLICATION COST						
Cost of measure	2.000 €					
Indirect cost	⊠ – High □ – Medium □ – Low					
APPLICATION BENEFIT	APPLICATION BENEFIT					
Energy	54.000 kWh/year					
Financial (in Green. € / year)	The cost benefit for stakeholders					
Environmental (kg CO2-eq)	42.606 kg _{CO2} /year					
RESULTS - EVALUATION						
Unit Cost (€/kg CO₂)	0.047€/ kg _{CO2 annual saving}	Recommended for implementation				

Equation: ES=v*ε*n*vδ*ESPP
ES: Energy Saving (kWh)
v: participation number
ε: Application years
n: Awareness Percentage (0-100%)
νδ: number of diffuse influence
ESPP: Green Energy per person (kWh)
Calculation:
ES= 20*3*0.3*3*1000kWh/year= 54.000
kWh/year

Measure: ESAC 2 -Organization annual seminar on energy saving

The organization of an annual seminar on Energy Saving in Psimolofou was examined. The all-day seminar will be held at the Town Hall, annually for a total of 3 years.

The indirect cost for the application of this measure can be considered high as apart from the organization of the seminar (speakers, invitations, space, catering etc), interested parties will have to bear the costs of implementing energy saving technologies at home on their own.

Measure implementation period: 2012 - 2014

Measure Code	ESAC 2				
Measure Name	Organization of annual seminar on Energy Saving				
APPLICATION COST					
Cost of Measure	3.000 €				
Indirect Cost	 ☐ - High ☐ - Average ☐ - Low 				
APPLICATION BENEFITS					
Energy	31.500 kWh/year				
Financial (Energy saving. €/year)	The financial benefits for interested parties				
Environmental (kg CO ₂ -eq)	20.283 kg _{co2} /year				
RESULTS - EVALUATION					
Unitary Cost (€/kg CO ₂)	0,10€/ kg _{CO2 annual saving}	Proposed for Implementation			

Equation: ES=v*ε*n*vδ*ESPP
ES: Energy Saving (kWh)
v: participation number
ε: Application years n: Awareness Percentage (0-100%) νδ: number of diffuse influence ESPP: Green Energy per person (kWh))
Calculation: ES= 20*3*0.25*3*700kWh/year= 31.500 kWh/year

Measure: ESEAC 3- Organization of educational presentations to students

The organization of educational presentations to students on renewable energy sources and energy saving was examined. The measure includes a set of 3 presentations.

The indirect cost of the measure can be considered as high as apart from the organization of the presentations, the interested party (who will become aware of the measure through their children) should bear the costs of implementing energy saving measures or renewable energy sources in their home, on their own.

Start of Implementation: 2013

Measure Code	ESAC 3				
Measure Name	Organization of educational pres	entations to students			
APPLICATION COST					
Measure Cost	600 €				
Indirect Cost	⊠ – High □ – Medium □ – Low				
APPLICATION BENEFIT					
Energy	36.000 kWh/year				
Financial (Green energy. €/year)	The financial benefits for interested parties				
Environmental (kgCO ₂ -eq)	25.524kg _{co2} /year				
RESULTS - EVALUATION					
Μοναδιαίο Κόστος (€/kg CO₂)	0.002€/ kg _{CO2 annual saving}	Proposed for Implementation			

Equation: ES=v*ε*n*vδ*ESPP
ES: Energy Saving (kWh) v: participation number ε: application years n: Awareness Percentage (0-100%) vδ: number of diffuse influence ESPP: Energy Saving per person (kWh)
Calculation: ES= 100*3*0.4*3*100kWh/year= 36.000 kWh/year

Measure: ESAC 4 – Organization of day without lighting

The organization of an annual day without lighting in Psimolofou was examined. The measure will apply for a period of 8years.

The indirect cost of the measure application can be considered as low.

Implementation on 30 March 2012 (and every following year for 8 years)

Measure Code	ESAC 4			
Measure Name	Organization of days without lighting			
APPLICATION COST				
Measure Cost	1000 €			
Indirect Cost	🔀 – High			
	Medium			
	– Low			
APPLICATION BENEFIT				
Energy	230.400 kWh/year			
Financial (Green energy. €/year)	The economic benefit for those concerned			
Environmental (kgCO₂-eq)	201.370kg _{co2} /year			
RESULTS – EVALUATION				
Unit Cost (€/kgCO₂)	0.005/ kg _{CO2 annual saving}	Proposed for Implementation		

Equation:	ES=v*ε*n*vδ*ESPP
ES: Energy Saving (kWh)	
v: participation number	
ε: Application years	
Calculation: ES= 400*8*0.20*3*120	kWh/year= 230.400 kWh/year

Measure: ESAC 5- Information about energy in the Municipality website and newspaper

The posting of information on Renewable Energy Sources (RES) and Energy Saving (ES) in Psimolofou website was examined. In addition, there will be a special article on energy in the Municipality quarterly newspaper. The measure will apply for a period of 8 years.

The indirect cost of the measure application can be considered as high as the interested party should bear the costs of implementing energy saving measures or renewable energy sources at home, on their own.

Start of Implementation: 2012 (and every following year for 8 years)

Measure Code	ESAC 6			
Measure Name	Information about energy in newspaper	the Community website and		
APPLICATION COST				
Measure Cost	0€			
Indirect Cost	⊠ – High □– Medium □ – Low			
APPLICATION BENEFIT				
Energy	36.000 kWh/year			
Financial (Green energy. €/year)	The economic benefit for those concerned			
Environmental (kgCO ₂ -eq)	25.524 kg _{co2} /year			
RESULTS – EVALUATION				
Unit Cost (€/kgCO ₂)	0.00 €/ kg _{CO2 annual saving}	Proposed for Implementation		

EQUATION ES=v*ε*n*vδ*ESPP
ES: Energy Saving (kWh)
v: participation number
ε: Application years
n: Awareness Percentage (0-100%)
vδ: number of diffuse influence
ESPP: Green Energy per person (kWh)
Calculation:
ES=100*8*0.15*3*100kWh/year=36.000 kWh/year

Measure: ESAC 6- Organization of Mobility days

The organization of an annual Mobility day in Psimolofou Community was examined. The measure would have a period of implementation 7 years.

The indirect cost of the measure application can be considered as low as, apart from organizing the event, there will be no participation cost for the interested party.

Start of implementation: September 2013

Measure Code	ESAC 6					
Measure Name	Organization of mobility days					
APPLICATION COST						
Measure Cost	1.000 €					
Indirect Cost	High					
	☐ Medium					
	⊠ – Low					
APPLICATION BENEFIT						
Energy	174.069 kWh/year					
Financial (Green energy. €/year)	The economic benefit for those concerned stems from fuel saving					
Environmental (kgCO₂-eq)	44.039 kg _{co2} /year					
RESULTS – EVALUATION						
Unit Cost (€/kgCO₂)	0.023€/ kg _{CO2 annual saving}	Proposed for Implementation				

Equation ES=v*ε*n*vδ*ESPP
ES: Energy Saving (kWh)
v: participation number
ε: Application years
n: Awareness Percentage (0-100%)
νδ: number of diffuse influence
ESPP: Green Energy per person (kWh)
Calculation: ES= 30*7*0.3*3*921kWh/year= 174.069 kWh/year

Measure: ESAC 7– Information and public awareness through leaflets and information messages

The preparation of information material to be used for updating, information and public awareness was examined.

The indirect cost of the measure application can be considered as high as apart from leaflets preparation and distribution, the interested party (to be aware) should bear their own any investment or savings.

Measure Code	ESAC 7	ESAC 7					
Measure Name	Informational lea	Informational leaflets and messages					
ΚΟΣΤΟΣ ΕΦΑΡΜΟΓΗΣ							
Measure Cost		Total(€)					
(a) Leaflets for RES and	ES	1.000 €					
(b) Leaflets for sustaina	able mobility	1.000 €					
Indirect Cost							
							
APPLICATION BENEFIT							
Energy		Number/ Percentag Recipients e of (k awareness			(k	Energy Profit Wh/person.year)	Energy Saving (kWh/year)
(a) Leaflets for RES and ES 1.000 15%				1000	150000		
(b) Leaflets for sustaina	able mobility	1.000		15%		1000	150000
Financial							
		The econor	mic	benefit for	thos	se concerned ste	ms from energy
Environmetal		Emissions S	avi	ng			
		(kg _{co2} / yea	r)				
(a) Leaflets for RES and	ES	106.350					
(b) Leaflets for sustaina	able mobility	37.950					
RESULTS – EVALUATIO	N						
Unit Cost (€/kgCO ₂)		Emissions reduction					
(a) Leaflets for RES and	ES	0.009 €/ kg _{CO2 annual saving}			\boxtimes		
(b) Leaflets for sustaina	able mobility	0.05€/ kg _{CO2 annual saving}					
MEASURE TO IMPLEMENT							
Total Cost Emission reduction							
2				14	4.300 Kg _{co2} / year		

Measure: ESAC 8 Organization of eco-driving seminar

The organization of an annual seminar on eco-driving in Psimolofou was examined. The measure would applied for 8years

The indirect application cost can be considered low

Start of Implementation: June of 2012

Measure Code	ESAC 8						
Measure Name	Organization of eco driving seminar						
APPLICATION COST							
Measure Cost	1600 €	1600 €					
Indirect Cost	 ☐ - High ☑ - Medium ☐ - Low 						
APPLICATION BENEFIT							
Energy	442.080 kWh/year						
Financial (Energy saving. €/year)	The economic benefit for those concerned stems from fuel saving						
Environmental(kgCO ₂ -eq)	111.846 kg _{co2} /year						
RESULTS – EVALUATION							
Unit Cost (€/kgCO₂)	0.014€/ kg _{CO2 annual saving}	Proposed for Implementation					

Equation: ES=v*ε*n*vδ*ESPP
ES: Energy Saving (kWh)
v: participation number
ε: Application years
n: Awareness Percentage (0-100%)
νδ: number of diffuse influence
ESPP: Green Energy per person (kWh)
Calculation: ES= 40*8*0.05*3*9210kWh/year= 442.080 kWh/year

7.4. Energy savings in transport

Measure: EST1 – Energy saving in the Community fleet

The possibility of purchase one vehicle with low CO2 emissions was examined.

The purchase cost of the measure application is not particularly important, as the following requirements must first be fulfilled: (a) preparation of the call for tenders (b) Evaluation of offers against specific technical and financial criteria of low emissions cars which is sponsored by the Scheme of the Ministry of Commerce, Industry and Tourism. 700 € for low emissions vehicle and 1200€ for a hybrid.

Measure Code	EST1				
Measure Name	Energy saving in th	ne Commı	inity fleet		
APPLICATION COST					
Measure Cost		Total	(€)		
Purchase of 1 eco cars		15.00	0€		
Indirect Cost					
		H	ligh		
		□-	Medium		
			-ow		
APPLICATION BENEFIT					
Energy		Energ	y Saving (kWh/year)	
Purchase of 1 eco cars		9.210			
Financial		Savin	g (€/year)		
Purchase of 1 eco cars		1000			
Environment		Emiss	ion Saving (kg _{co2} / ye	ear)	
Purchase Of 1 eco cars		2.330			
AΠORESULTS-EVALUAT	ION				
Unit Cost €/kgCO ₂				Proposed for Implementation	
Purchase of 1eco cars 6.44 €/ kg _{CO2 ann}		CO2 annual saving	\boxtimes		
MEASURE TO IMPLEM	ENT				
To	Total Cost Emissions Reduction				
1	5.000 €		:	2.330 Kg _{co2} / year	

7.5. Energy saving in street lighting

Measure: ESSL1 - ENERGY SAVING IN STREET LIGHTING

The possibility of saving energy in street lighting was examined. The street lighting is one of the major costs of the Community. The electricity consumption of the street lighting in Psimolofou Community in 2009 was 124 MWh.

Two cases were examined (a) lamp replacement with economic LED lamps and (b) optimization study of the operating hours of street lighting.

The indirect application cost can be considered low.

Year of Measure Implementation: 2013

Measure Code	ESSL1						
Measure Name	Energy saving in stre	et lighting					
APPLICATION COST							
(a) Lamp replacement	with LED	Total (€)					
(b) Optimization of street lighting function		100.000€					
Indirect Cost		2.000 €					
Maintenance Cost		– High					
		∐ –Medi	um				
		⊠ – Low					
		│					
	□ Integralia						
APPLICATION BENEFIT							
Energy		Number Electricity		ES per lamp		EnergySaving	
		Consumption		per year		(kWh/year)	
		per lamp (kWh/year)		(%)			
(a) Lamp replacement	with LFD	200	80		50		80.000
(b) Optimization of str		200	80		5		8.000
Financial	eer ngmmg rememen	EnergySavi			ge price of	Sai	ving (€/year)
i ilialiciai		(kWh/year	-		icity (€/kWh)	Ja	ville (e) year j
(a) Lamp replacement	with LED	80.00			0.25		20.000
(b) Optimization of str	eet lighting function	8.00	0		0.25		2.000
Environmental		Emissions Saving					
		(kg _{co2} / year)					
(a) Lamp replacement	with LED	17.480					
(b) Optimization of str	eet lighting function	on 1.748					
RESULTSEVALUATIO	N						
Unit Cost (€/kg CO ₂)					Proposed for	Imp	lementation

(a) Lamp replacement with LED	5,72 €/ kg _C	O2 annual saving	\boxtimes		
(b) Optimization of street lighting function		1,144 €/ kg _{CO2 annual saving}		\boxtimes	
MEASURE TO IMPLEMENT ESSL					
Total cost 102.000 €		Saving .000€	Emissions Reduction		Repayment 4.63 years
102.000 0		.0000	19.228 Kg _{CO2}	/ year	4105 years

7.6. Development of green spaces in Psimolofou Community

Measure: DGS1 – Development of green spaces in Psimolofou

Was examined: (a) trees planting, (b) care of green spaces

The indirect cost of the measure application can be considered limited

Measure Code	sure Code DGS1						
Measure Name	asure Name Development of green space in Psimolofou Community						
APPLICATION COST							
Measure Cost		Total	(€)				
(a) Tree Planting (2000	trees)	1000	€				
(b) Care of green space	es .	1000	€				
Indirect Cost							
		□-I	High				
			Medium				
		<u> </u>	Low				
APPLICATION BENEFIT							
Environmental		Emiss	ns Saving				
		(kg _{co2}	(kg _{co2} / year)				
(a) Tree Planting (2000	trees)	40.00	0				
(b) Care of green space	es .	20.00	20.000				
RESULTSEVALUATIO	N						
Unit Cost (€/kg CO ₂)				Proposed for Implementation			
(a) Tree Planting (2000 trees) 0.04		0.04 €/ k	4 €/ kg _{CO2 annual saving}				
(b) Care of green spaces 0.10 €/ k		CO2 annual saving	\boxtimes				
ΜΕΤΡΟ ΠΡΟΣ ΥΛΟΠΟΙΗΣΗ ΕΕΠ11(α),(β) Προώθηση αυτοκινήτων με χαμηλές εκπομπές CO_2				λές εκπομπές CO₂			
Total Cost			Emissions Reduction				
2.000 €			50.000 Kg _{co2} / year				

7.7. Summary of proposed measures at Psimolofou Community

Table 19 Brief Presentation of Measures Taken by Psimolofou Community and Included in the Sustainable Energy Action Plan

Measure / Action	Application	Cost (€)	Emissions Reduction (Kg _{CO2} / year)	Depreciation /Repayment
Energy Saving in public buildings				
EE1 - Interventions of insulation	2012	150	1.005	0,52 χρόνια
EE2 - Maintenance of heating and air conditioning	2012-2020	200	1.458	0,4 χρόνια
EE3Renewable electricity with PV in the building or in the parking lot of the Community	2013-2016	50.000	23.660	6,67 χρόνια
Energy Saving through awareness ra	ising campaigi	ns		
ESAC1 - Organizing an annual seminar on Renewable Energy Sources	2013-2015	2.000	42.606	-
ESAC2 - Organizing an annual seminar on energy saving	2013-2015	2.000	20.283	-
ESAC3 - Organization of educational presentations to students	2013-2020	600	102.096	-
ESAC4: Organizing day without lighting	2012-2020	1.000	201.370	-
ESAC5: Information on energy in the Community website	2012-2020	0	127.620	-
ESAC6: Organizing of mobility day	2013-2020	1.000	44.039	-
ESAC7: Information sensitization with documents	2012-2020	2.000	144.300	-
ESAC8: Organizing eco-driving seminar	2012-2020	1.600	111.846	
Saving energy in transports				
EST 1: Saving energy in the Community fleet	2014	15.000	2.330	-
Energy savings in street lighting				
ESSL 1: Energy saving in street lighting	2013	102.000	19.228	4,63 χρόνια

Development of green spaces							
Development of green spaces in Psimolofou	2012-2020	2.000	40.000	-			
TOTAL		179.550	881.841				

7.8. Contribution of National Measures on Sustainable Energy Action Plan of Psimolofou Community

Energy saving and carbon dioxide emissions reduction for 2020 from the contribution of national measures, were calculated and are presented in the tables below.

Table 20 Total presentation of energy saving from national measures

	Table 20 Total presentation of energy sav	Energy Saving (MWh/year)					
	NATIONAL MEASURES FOR ENERGY EFFICIENCY	Residential	Tertiary	Industrial	Transports		
1	Legislation on Energy Building Performance (Equation 1)	128	47	94	0		
2	Legislation for the inspection of air conditioning and heating systems (Equation 1)	62	22	45	0		
3	Grant Schemes for the installation of solar thermal systems (Equation 1)	22	8	16	0		
4	Grant Schemes for the installation of geothermal systems (Equation 1)	15	6	11	0		
5	Legislation on energy efficiency of appliances (Equation 1)	91	43	97	0		
6	Grant Schemes for the installation of Photovoltaics Systems (Equation 2)	69	58	115	0		
7	Legislation for mandatory integration of solar water heaters (Equation 1)	11	5	11	0		
8	Grant Schemes for thermal insulation of buildings	0	47	37	0		
9	Grant Schemes for cogeneration in Industry (Equation 1)	0	0	214	0		
10	Plan of single urban transport system (Equation 3)	0	0	0	1.844		
11	Mandatory inspection of Vehicles MOT (Equation 3)	0	0	0	1.209		
12	Withdrawal Plan of old vehicles (Equation 3)	0	0	0	290		
13	Grant Schemes for hybrid vehicles and vehicles with low CO2 emissions (Equation 3)	0	0	0	155		
14	Discounts on vehicles registration for vehicles with low CO2 emissions (Equation 3)	0	0	0	193		
	TOTAL PER SECTOR	399	235	641	3.692		
	TOTAL		4.966				

 Table 21 Total presentation of reducing CO2 emissions from national measures

NATIONAL MEASURES FOR ENERGY		Emission Reduction (tCO ₂ /year)			
	NATIONAL MEASURES FOR ENERGY		Residential	Residential	Residential
1	Legislation on Energy Building Performance (Equation 1)	91	34	68	0
2	Legislation for the inspection of air conditioning and heating systems (Equation 1)	44	17	33	0
3	Grant Schemes for the installation of solar thermal systems (Equation 1)	15	6	11	0
4	Grant Schemes for the installation of geothermal systems (Equation 1)	11	4	8	0
5	Legislation on energy efficiency of appliances (Equation 1)	65	32	71	0
6	Grant Schemes for the installation of Photovoltaics Systems (Equation 2)	49	42	84	0
7	Legislation for mandatory integration of solar water heaters (Equation 1)	8	4	8	0
8	Legislation on energy efficiency of buildings with area larger than 1000 m^2 (Equation 1)	0	34	27	0
9	Grant Schemes for cogeneration in Industry (Equation 1)	0	0	156	0
10	Plan of single urban transport system (Equation 3)	0	0	0	466
11	Mandatory inspection of Vehicles MOT (Equation 3)	0	0	0	305
12	Withdrawal Plan of old vehicles (Equation 3)	0	0	0	73
13	Grant Schemes for hybrid vehicles and vehicles with low CO ₂ emissions (Equation 3)	0	0	0	39
14	Discounts on vehicles registration for vehicles with low CO ₂ emissions (Equation 3)	0	0	0	49
	TOTAL PER SECTOR	283	173	467	933
	GRAND TOTAL	1.855			

Table 22 Equations used for access contribution of the national measures to save energy

(1) ES=EC*np*nc*ns

ES: Energy Saving (MWh)

EC: Energy Consumption (MWh)

np: Number of Participation (0-100%)

nc: Consumption rate per consumption category (0-100%)

ns: Saving Percentage by applied measure (0-100%)

(2) **GE=N*P*np**

GE: Green Energy (MWh)

N: Population

P: Production per application (MWh) np: Number of participation (0-100%)

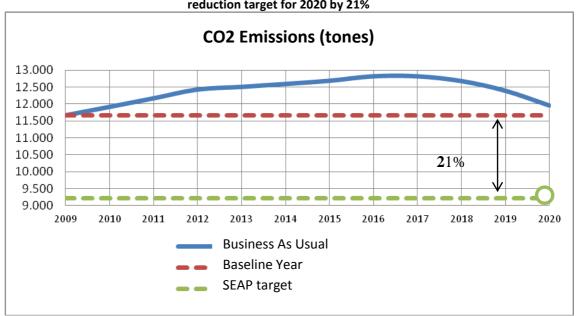
(3) EOS=(N*FO*np)+(Δ O*FO*np)

EOS: Energy Saving from fuel MWh)

N: Population

FO: Saving Energy per person (MWh) np: Number of participation (0-100%)

ΔO: Passing Vehicles



7.9. Description of Achieving CO2 Emission Reduction by 2020

The overall goal of reducing carbon dioxide emissions achieved by implementing the action plan for 2020, is 21% reduction compared to the reference year 2009. Achieving this objective is presented in the table below.

Emission inventory for reference year 2009 (tnCO ₂ /year)		
Expected emissions for 2020 – Expected Development Scenario (tn CO ₂ /year)		
Estimated emission reduction from national measures for 2020 (tn CO ₂ /year)	1.855	
Estimated emission reduction by the Municipality for 2020 (tn CO ₂ /year)		
Total estimated emission reductions for 2020 (tn CO ₂ /year)		
Estimated emissions for 2020 of the Action		
(tn CO ₂ /year)		
Emission reduction percentage by 2020 compared with 2009		

Picture 23 Schematic of the Expected Evolution Scenario of CO2 emissions in Psimolofou and the reduction target for 2020 by 21%

Therefore the implementation of Energy Action Plan, Psimolofou Community will reduce carbon dioxide emissions by 21% compared to 2009 (reaching 9.220tons of CO₂)

7.10. Financing the Sustainable Energy Action Plan

Funding for Energy Action Plan implementation is expected to be derived form the following resources:

- Municipality budget
- Savings that will result from energy reduction measures in buildings, vehicles and street lighting in the Municipality
- Incomes form the investments of the Municipality in Renewable Energy Sources
- Funding from the Grant Scheme of Ministry of Commerce, Industry and Tourism for Renewable Energy Sources and Energy Saving promotion.
- Possible funding from the structural funds.
- Possible funding from the Fund created by the Tender incomes og greenhouse gas emissions.
- Possible funding from other European Programmes.

Sources of energy data

- ► Fuel/heating fuel consumption from oil companies within the administrative limits of Psimolofou Community.
- ► LPG consumption from the Statistical Service of Cyprus (Reduction at local level based on the population)

 [www.mof.gov.cy/cysta]
- Annual growth rates from the Statistical Service of Cyprus and estimates of scholars [www.mof.gov.cy/cysta]
- ► National Action Plan for reducing CO₂ emissions from the Department of Environment

 [http://www.cyprus.gov.cy/moa/agriculture.nsf]
- ► National Action Plans for the share of RES from the Energy Service. [http://www.mcit.gov.cy/mcit/mcit.nsf]
- National Action Plan for Energy Efficiency from the Energy Service. [http://www.mcit.gov.cy/mcit/mcit.nsf]
- ► Grant Schemes for RES and ES from the Energy Service [http://www.mcit.gov.cy/mcit/mcit.nsf]
- Development of Public transport Plans from the Department of Road Transport [www.mcw.gov.cy/mcw/rtd/rtd.nsf]
- ► Electricity Consumption data in the Municipality from the Electricity Authority of Cyprus [www.eac.com.cy]
- ▶ Energy consumption data in communal buildings from the Psimolofou Community.
- Information concerning the installation of more efficient electricity generators (combined cycle) from EAC [www.eac.com.cy]
- ► Information about the advent of Natural Gas from the Energy Service [http://www.mcit.gov.cy/mcit/mcit.nsf]

)

Prepared by: Cyprus Energy Agency

Anthi Charalambous Savvas Vlachos Orestis Kyriacou

Contact:

10-12 Lefkonos Street, 1011 Nicosia, Cyprus

Tel. +357-22667716, +35722667736

Fax: +357-22667736

Email: anthi.charalambous@cea.org.cy

savvas.vlachos@cea.org.cy
orestis.kyriakou@cea.org.cy

Web: www.cea.org.cy

Supervision: Psimolofou Community

President of Community Council

Contact:

Psimolofou Community Vasilis Michailides 4,

P.C. 2630cPsimolofou, Cyprus

Tel. +357-22621248 Fax: +357-22624322

Email: info@psimolofou.org

Web: www.psimolofou.org

ISLEPACT project : Web: http://www.islepact.eu

Tel. +32(0) 2 6121704

ENERGY ACTION PLANΣ Psimilofou Community Cyprus

Prepared by:

Local and regional authorities:

Financial support:

Disclaimer:

The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein.